Electroencephalographic frontal synchrony and caudal asynchrony during painful hand immersion in cold water.

In this study, we sought to validate our pre-clinical data using EEG recordings in humans during immersion of the hand in ice cold water, a moderately noxious stimulus. Power spectral analysis shows that an increase in pain score is associated with an increase in power amplitude within a frequency range of 6-7Hz at the frontal (Fz) electrode. These results are consistent with our previous pre-clinical animal studies and the clinical literature. We also report a novel reduction in power at the caudal (O1) electrode within a broader 3-30Hz rand and decreased coherence between Fz and C3, C4 electrodes within the theta (4-8Hz) and low beta (13-21Hz) bands, while coherence (an indirect measure of functional connectivity) between Fz and O1 increased within the theta and alpha (8-12Hz) bands. We argue that pain is associated with EEG frontal synchrony and caudal asynchrony, leading to the disruption of cortico-cortical connectivity. PMID: 28017779 [PubMed - as supplied by publisher]
Source: Brain Research Bulletin - Category: Neurology Authors: Tags: Brain Res Bull Source Type: research