Abstract < /h3 > < p class= " a-plus-plus " > Virtually everyone working in cancer research is familiar with the “Warburg effect”, i.e., anaerobic glycolysis in the presence of oxygen in tumor cells. However, few people nowadays are aware of what lead Otto Warburg to the discovery of this observation and how his other scientific contributions are seminal to our pr..."> Abstract < /h3 > < p class= " a-plus-plus " > Virtually everyone working in cancer research is familiar with the “Warburg effect”, i.e., anaerobic glycolysis in the presence of oxygen in tumor cells. However, few people nowadays are aware of what lead Otto Warburg to the discovery of this observation and how his other scientific contributions are seminal to our pr..." /> Abstract < /h3 > < p class= " a-plus-plus " > Virtually everyone working in cancer research is familiar with the “Warburg effect”, i.e., anaerobic glycolysis in the presence of oxygen in tumor cells. However, few people nowadays are aware of what lead Otto Warburg to the discovery of this observation and how his other scientific contributions are seminal to our pr..." />

Warburg effect(s) —a biographical sketch of Otto Warburg and his impacts on tumor metabolism

< h3 class= " a-plus-plus " > Abstract < /h3 > < p class= " a-plus-plus " > Virtually everyone working in cancer research is familiar with the “Warburg effect”, i.e., anaerobic glycolysis in the presence of oxygen in tumor cells. However, few people nowadays are aware of what lead Otto Warburg to the discovery of this observation and how his other scientific contributions are seminal to our present knowledge of metabolic and energetic processes in cells. Since science is a human endeavor, and a scientist is imbedded in a network of social and academic contacts, it is worth taking a glimpse into the biography of Otto Warburg to illustrate some of these influences and the historical landmarks in his life. His creative and innovativ e thinking and his experimental virtuosity set the framework for his scientific achievements, which were pioneering not only for cancer research. Here, I shall allude to the prestigious family background in imperial Germany; his relationships to Einstein, Meyerhof, Krebs, and other Nobel and notable scientists; his innovative technical developments and their applications in the advancement of biomedical sciences, including the manometer, tissue slicing, and cell cultivation. The latter were experimental prerequisites for the first metabolic measurements with tumor cells in the 1920s. In the 19 30s–1940s, he improved spectrophotometry for chemical analysis and developed the optical tests for measuring activities of glycolytic enzymes. Warburg...
Source: Cancer and Metabolism - Category: Cancer & Oncology Source Type: research