The effect of roughness in simultaneously retrieval of land surface parameters

In this study, a model called Simultaneous Land Parameters Retrieval Model (SLPRM) that is an iterative least-squares minimization method is proposed. The algorithm estimates surface soil moisture, land surface temperature and canopy temperature simultaneously in vegetated areas using AMSR-E (Advance Microwave Scanning Radiometer-EOS) brightness temperature data. The simultaneous estimations of the three parameters are based on a multi-parameter inversion algorithm which includes model construction, calibration and validation using observations carried out for the SMEX03 (Soil Moisture Experiment 2003) region in the South and North of Oklahoma. Roughness parameter has also been included in the algorithm to increase the soil parameters retrieval accuracy. Unlike other methods, the SLPRM method works efficiently in all land covers types. The study focuses on soil parameters estimation by comparing three different scenarios with the inclusion of roughness data and selects the most appropriate one. The difference between the resulted accuracies of scenarios is due to the roughness calculation approach. The analysis on the retrieval model shows a meaningful and acceptable accuracy on soil moisture estimation according to the three scenarios. The SLPRM method has shown better performance when the SAR (Synthetic Aperture RADAR) data are used for roughness calculation.
Source: Physics and Chemistry of the Earth, Parts ABC - Category: Science Source Type: research