Sensitivity of microbial bioindicators in assessing metal immobilization success in smelter-impacted soils

This study assessed the sensitivity of microbial bioindicators in monitoring metal immobilization success in smelter-impacted soils. It compared plants and microorganisms as indicators of the efficiency of natural Fe-Mn nodules from the Gulf of Finland in immobilizing metals in soils contaminated by a Ni/Cu smelter, on the Kola Peninsula, Murmansk region, Russia. Perennial ryegrass (Lolium perenne) was grown on nodule-amended and control soils. Plant responses in the smelter-impacted soils proved to be sensitive and robust indicators of successful metal immobilization. However, microbial responses exhibited a more complex story. Despite the observed reductions in soluble metal concentrations, shoot metal contents in ryegrass, and significant improvements in plant growth, certain microbial bioindicators were unresponsive to metal immobilization success brought about by the addition of Fe-Mn nodules. Among microbial bioindicators studied, community-level physiological profiling, microbial biomass carbon, and basal respiration were sensitive indicators of metal immobilization success, whereas the number of saprotrophic, oligotrophic, and Fe-oxidizing bacteria and fungi, the biomass of bacteria and fungi, and enzymatic activity were less robust indicators. Interestingly, the correlations between different microbial responses measured were weak or even negative. Some microbial responses also exhibited negative correlations with plant biomass. These findings underscore the need for...
Source: Chemosphere - Category: Chemistry Authors: Source Type: research