Electroconductive cardiac patch based on bioactive PEDOT:PSS hydrogels

This study introduces a synthetic patch with a bioactive surface designed to swiftly restore functionality to the damaged myocardium. The patch combines a composite, soft, and conductive hydrogel-based on (3,4-ethylenedioxythiophene):polystyrene-sulfonate (PEDOT:PSS) and polyvinyl alcohol (PVA). This cardiac patch exhibits a reasonably high electrical conductivity (40 S/cm) and a stretchability up to 50% of its original length. Our findings reveal its resilience to 10% cyclic stretching at 1 Hz with no loss of conductivity over time. To mediate a strong cell-scaffold adhesion, we biofunctionalize the hydrogel with a N-cadherin mimic peptide, providing the cardiac patch with a bioactive surface. This modification promote increased adherence and proliferation of cardiac fibroblasts (CFbs) while effectively mitigating the formation of bacterial biofilm, particularly against Staphylococcus aureus, a common pathogen responsible for surgical site infections (SSIs). Our study demonstrates the successful development of a structurally validated cardiac patch possessing the desired mechanical, electrical, and biofunctional attributes for effective cardiac recovery. Consequently, this research holds significant promise in alleviating the burden imposed by myocardial infarctions.PMID:38689450 | DOI:10.1002/jbm.a.37729
Source: Biomed Res - Category: Research Authors: Source Type: research