Biological dose optimization incorporating intra-tumoural cellular radiosensitivity heterogeneity in ion-beam therapy treatment planning

Phys Med Biol. 2024 Apr 18. doi: 10.1088/1361-6560/ad4085. Online ahead of print.ABSTRACT
Treatment plans of charged-particle therapy have been made under an assumption that all cancer cells within a tumour equally respond to a given radiation. However, an intra-tumoural cellular radiosensitivity heterogeneity clearly exists, and it may lead to an overestimation of therapeutic effects of the radiation. The purpose of this study was to develop a biological model that can incorporate the radiosensitivity heterogeneity into biological optimization for charged-particle therapy treatment planning.
Approach. The radiosensitivity heterogeneity was modeled as the variability of a cell-line specific parameter in the microdosimetric kinetic model following the gamma distribution. To validate the developed intra-tumoural-radiosensitivity-heterogeneity-incorporated microdosimetric kinetic (HMK) model, a treatment plan with H-ion beams was made for a chordoma case assuming a radiosensitivity heterogeneous region within the tumour. To investigate the effects of the radiosensitivity heterogeneity on the biological effectiveness of H-, He-, C-, O-, and Ne-ion beams, the relative biological effectiveness (RBE)-weighted dose distributions were planned to a cuboid target with the stated ion beams without considering the heterogeneity. The planned dose distributions were then recalculated by taking the heterogeneity into account.
Main results:
The cell survival fr...
Source: Physics in Medicine and Biology - Category: Physics Authors: Source Type: research