Knockdown of ADAM10 inhibits migration and invasion of fibroblast-like synoviocytes in rheumatoid arthritis.

Knockdown of ADAM10 inhibits migration and invasion of fibroblast-like synoviocytes in rheumatoid arthritis. Mol Med Rep. 2015 Jul 1; Authors: Li D, Xiao Z, Wang G, Song X Abstract Rheumatoid arthritis (RA) is a systemic autoimmune disease with high rates of morbidity and mortality. Previous studies proposed that the A disintegrin and metalloprotease (ADAM) family is involved in the regulation of inflammation and arthritis. Thus, the present study investigated whether ADAM10 is involved in the progression of RA. The effects of ADAM10 small interfering (si)RNA on the expression levels of tumor necrosis factor (TNF)‑α, interleukin (IL)‑6, IL‑8 and chemokine (C-X-C motif) ligand 16 (CXCL16) were determined in fibroblast‑like synoviocytes (FLS). In addition, the effects of ADAM10 siRNA on cell proliferation, invasion and migration in human RA‑FLS were assessed in vitro. The therapeutic efficacy and side‑effects of ADAM10 siRNA were examined in a mouse model of collagen‑induced arthritis (CIA). In vitro, ADAM10 silencing suppressed the expression of TNF‑α, IL‑6, IL‑8 and CXCL16 in lipopolysaccharide (LPS)‑stimulated human RA‑FLS. LPS‑induced RA‑FLS proliferation, migration and invasion were significantly attenuated by ADAM10 knockdown. ADAM10 silencing inhibited the secretion of vascular endothelial growth factor A (VEGF‑A) and matrix metalloproteinase (MMP)‑3 and ‑9 from LPS‑stimulated human RAâ...
Source: Molecular Medicine Reports - Category: Molecular Biology Tags: Mol Med Rep Source Type: research