Platelet Microparticle-Derived MiR-320b Inhibits Hypertension with Atherosclerosis Development by Targeting ETFA

This study aimed to explore the role and mechanism of platelet microparticle (PMP) -derived microRNA-320b (miR-320b) in patients with hypertension accompanied by atherosclerosis.We collected samples from 13 controls without hypertension and atherosclerosis and 20 patients who had hypertension accompanied by atherosclerosis. In vitro, platelets were activated by Thrombin receptor-activating peptide to produce PMPs. HUVECs were induced by CoCl2 to mimic a hypoxic environment in vitro. RT-qPCR was employed to detect the expression levels of CD61, miR-320b, and ETFA. The protein expression level of ETFA was evaluated via Western blotting. Furthermore, 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide, 5-ethynyl-2'-deoxyuridine, and wound healing assays were employed to assess the proliferation and migration of HUVECs. Enzyme-linked immunosorbent assay was used to measure the oxidative stress and inflammation-related factor expression.The expression of miR-320b was reduced in both platelets and PMPs but increased in plasma. MiR-320b promoted CoCl2-induced HUVEC viability, proliferation, and migration. The levels of the oxidative stress factors SOD and GSH as well as the inflammatory factor IL-10 were elevated in the CoCl2 + miR-320b mimics group compared with both the CoCl2 + mimics NC and CoCl2 groups. Conversely, the levels of the oxidative stress factors MDA and ROS as well as the inflammatory factors IL-6, TNF-α, and IL-1β were decreased. These results were regu...
Source: International Heart Journal - Category: Cardiology Authors: Source Type: research