Bridging horizons beyond CIRCULATE-Japan: a new paradigm in molecular residual disease detection via whole genome sequencing-based circulating tumor DNA assay

AbstractCirculating tumor DNA (ctDNA) is the fraction of cell-free DNA in patient blood that originates from a tumor. Advances in DNA sequencing technologies and our understanding of the molecular biology of tumors have increased interest in exploiting ctDNA to facilitate detection of molecular residual disease (MRD). Analysis of ctDNA as a promising MRD biomarker of solid malignancies has a central role in precision medicine initiatives exemplified by our CIRCULATE-Japan project involving patients with resectable colorectal cancer. Notably, the project underscores the prognostic significance of the ctDNA status at 4  weeks post-surgery and its correlation to adjuvant therapy efficacy at interim analysis. This substantiates the hypothesis that MRD is a critical prognostic indicator of relapse in patients with colorectal cancer. Despite remarkable advancements, challenges endure, primarily attributable to the ex ceedingly low ctDNA concentration in peripheral blood, particularly in scenarios involving low tumor shedding and the intrinsic error rates of current sequencing technologies. These complications necessitate more sensitive and sophisticated assays to verify the clinical utility of MRD across all sol id tumors. Whole genome sequencing (WGS)-based tumor-informed MRD assays have recently demonstrated the ability to detect ctDNA in the parts-per-million range. This review delineates the current landscape of MRD assays, highlighting WGS-based approaches as the forefront te...
Source: International Journal of Clinical Oncology - Category: Cancer & Oncology Source Type: research