Stress-induced failure of embodied cognition: A general model

Biosystems. 2024 Mar 22:105193. doi: 10.1016/j.biosystems.2024.105193. Online ahead of print.ABSTRACTWe derive the classic, ubiquitous, but enigmatic Yerkes-Dodson effect of applied stress on real-world performance in a highly natural manner from fundamental assumptions on cognition and its dynamics, as constrained by the asymptotic limit theorems of information and control theories. We greatly extend the basic approach by showing how differences in an underlying probability model can affect the dynamics of decision across a broad range of cognitive enterprise. Most particularly, however, this development may help inform our understanding of the different expressions of human psychopathology. A 'thin tailed' underlying distribution appears to characterize expression of 'ordinary' situational depression/anxiety symptoms of conditions like burnout induced by toxic stress. A 'fat tailed' underlying distribution appears to be associated with brain structure and function abnormalities leading to serious mental illness and poor decision making where symptoms are not only emerging in the setting of severe stress but may also appear in a highly punctuated manner at relatively lower levels of stress. A simple hierarchical optimization shows how environmental 'shadow price' constraints can buffer or aggravate the effects of stress and arousal. Extension of the underlying theory to other patterns of pathology, like immune disorders and premature aging, seems apt. Applications to the pun...
Source: Biosystems - Category: Biotechnology Authors: Source Type: research