Tinnitus-related increases in single-unit activity in awake rat auditory cortex correlate with tinnitus behavior

Hear Res. 2024 Mar 16;445:108993. doi: 10.1016/j.heares.2024.108993. Online ahead of print.ABSTRACTTinnitus is known to affect 10-15 % of the population, severely impacting 1-2 % of those afflicted. Canonically, tinnitus is generally a consequence of peripheral auditory damage resulting in maladaptive plastic changes in excitatory/inhibitory homeostasis at multiple levels of the central auditory pathway as well as changes in diverse nonauditory structures. Animal studies of primary auditory cortex (A1) generally find tinnitus-related changes in excitability across A1 layers and differences between inhibitory neuronal subtypes. Changes due to sound-exposure include changes in spontaneous activity, cross-columnar synchrony, bursting and tonotopic organization. Few studies in A1 directly correlate tinnitus-related changes in neural activity to an individual animal's behavioral evidence of tinnitus. The present study used an established condition-suppression sound-exposure model of chronic tinnitus and recorded spontaneous and driven single-unit responses from A1 layers 5 and 6 of awake Long-Evans rats. A1 units recorded from animals with behavioral evidence of tinnitus showed significant increases in spontaneous and sound-evoked activity which directly correlated to the animal's tinnitus score. Significant increases in the number of bursting units, the number of bursts/minute and burst duration were seen for A1 units recorded from animals with behavioral evidence of tinnitus. Th...
Source: Hearing Research - Category: Audiology Authors: Source Type: research