Fungus-mediated synthesis of Se-BiO-CuO multimetallic nanoparticles as a potential alternative antimicrobial against ESBL-producing Escherichia coli of veterinary origin

In this study, Se-Boil-CuO multimetallic nanoparticles (MMNPs) were synthesized as an alternate treatment from Talaromyces haitouensis extract, and their efficiency in treating ESBL E. coli was confirmed using standard antimicrobial assays. Scanning electron microscopy, UV–visible spectroscopy, and dynamic light scattering were used to validate and characterize the mycosynthesized Se-BiO-CuO MMNPs. UV–visible spectra of Se-BiO-CuO MMNPs showed absorption peak bands at 570, 376, and 290 nm, respectively. The average diameters of the amorphous-shaped Se-BiO-CuO MMNPs synthesized by T. haitouensis extract were approximately 66–80 nm, respectively. Se-BiO-CuO MMNPs (100 μg/mL) showed a maximal inhibition zone of 18.33 ± 0.57 mm against E. coli. Se-BiO-CuO MMNPs also exhibited a deleterious impact on E. coli killing kinetics, biofilm formation, swimming motility, efflux of cellular components, and membrane integrity. The hemolysis assay also confirms the biocompatibility of Se-BiO-CuO MMNPs at the minimum inhibitory concentration (MIC) range. Our findings suggest that Se-BiO-CuO MMNPs may serve as a potential substitute for ESBL E. coli bacteremia.
Source: Frontiers in cellular and infection microbiology - Category: Microbiology Source Type: research