Characterization of the ADP- β-D-manno-heptose biosynthetic enzymes from two pathogenic Vibrio strains

Appl Microbiol Biotechnol. 2024 Mar 18;108(1):267. doi: 10.1007/s00253-024-13108-3.ABSTRACTADP-activated β-D-manno-heptoses (ADP-β-D-manno-heptoses) are precursors for the biosynthesis of the inner core of lipopolysaccharide in Gram-negative bacteria. Recently, ADP-D-glycero-β-D-manno-heptose (ADP-D,D-manno-heptose) and its C-6'' epimer, ADP-L-glycero-β-D-manno-heptose (ADP-L,D-manno-heptose), were identified as potent pathogen-associated molecular patterns (PAMPs) that can trigger robust innate immune responses. Although the production of ADP-D,D-manno-heptose has been studied in several different pathogenic Gram-negative bacteria, current knowledge of ADP-β-D-manno-heptose biosynthesis in Vibrio strains remains limited. Here, we characterized the biosynthetic enzymes of ADP-D,D-manno-heptose and the epimerase that converts it to ADP-L,D-manno-heptose from Vibrio cholerae (the causative agent of pandemic cholera) and Vibrio parahaemolyticus (non-cholera pathogen causing vibriosis with clinical manifestations of gastroenteritis and wound infections) in comparison with their isozymes from Escherichia coli. Moreover, we discovered that β-D-mannose 1-phosphate, but not α-D-mannose 1-phosphate, could be activated to its ADP form by the nucleotidyltransferase domains of bifunctional kinase/nucleotidyltransferases HldEVC (from V. cholerae) and HldEVP (from V. parahaemolyticus). Kinetic analyses of the nucleotidyltransferase domains of HldEVC and HldEVP together with the E. c...
Source: Applied Microbiology and Biotechnology - Category: Microbiology Authors: Source Type: research