Fabrication and characterization of a bioactive composite scaffold based on polymeric collagen/gelatin/nano β-TCP for alveolar bone regeneration

This study aimed to fabricate and characterize the freeze-dried bone regeneration scaffolds composed of polymeric Type I collagen, nano Beta-tricalcium phosphate (β-TCP), and gelatin. The stable structures of scaffolds were obtained by thermal crosslinking and EDC/NHS ((1-ethyl-3-(3-dimethylaminopropyl) carbodiimide)/(N-hydroxysuccinimide)) chemical crosslinking processes. Subsequently, the physicochemical and biological properties of the scaffolds were characterized and assessed. The results indicated the bioactive composite scaffolds containing 10% and 20% (w/v) nano β-TCP exhibited suitable porosity (84.45 ± 25.43 nm, and 94.51 ± 14.69 nm respectively), a rapid swelling property (reaching the maximum swelling rate at 1 h), excellent degradation resistance (residual mass percentage of scaffolds higher than 80% on day 90 in PBS and Type I collagenase solution respectively), and sustained calcium release capabilities. Moreover, they displayed outstanding biological properties, including superior cell viability, cell adhesion, and cell proliferation. Additionally, the scaffolds containing 10% and 20% (w/v) nano β-TCP could promote the osteogenic differentiation of MC3T3-E1. Therefore, the bioactive composite scaffolds containing 10% and 20% (w/v) nano β-TCP could be further studied for being used to treat alveolar bone defects in vivo.PMID:38484429 | DOI:10.1016/j.jmbbm.2024.106500
Source: Journal of the Mechanical Behavior of Biomedical Materials - Category: Materials Science Authors: Source Type: research