Small molecules that disrupt RAD54-BLM interaction hamper tumor proliferation in colon cancer chemoresistance models

J Clin Invest. 2024 Feb 29:e161941. doi: 10.1172/JCI161941. Online ahead of print.ABSTRACTRAD54 and BLM helicase play pivotal roles during homologous recombination repair (HRR) ensuring genome maintenance. BLM amino acids (181-212) interacts with RAD54 and enhances its chromatin remodelling activity. Functionally, this interaction heightens HRR, leading to a decrease in residual DNA damage in colon cancer cells. This contributes to chemoresistance in colon cancer cells against cisplatin, camptothecin and oxaliplatin, eventually promoting tumorigenesis in preclinical colon cancer mouse models. ChIP-seq analysis and validation revealed increased BLM/RAD54 co-recruitment on MRP2 promoter in camptothecin resistant colon cancer cells, leading to BLM-dependent enhancement of RAD54-mediated chromatin remodelling. We screened Prestwick small molecule library intending to revert camptothecin and oxaliplatin induced chemoresistance by disrupting BLM-RAD54 interaction. Three FDA/EMA approved candidates were identified which could disrupt this interaction. These drugs bind to RAD54, alter its conformation and abrogate BLM-RAD54 dependent chromatin remodeling on G5E4 and MRP2 arrays. Notably, the small molecules also reduced HRR repair efficiency in resistant lines, diminished anchorage independent growth, hampered the proliferation of tumors generated using camptothecin and oxaliplatin resistant colon cancer cells in both xenograft and syngeneic mouse models in BLM dependent manner. Henc...
Source: Clinical Colorectal Cancer - Category: Cancer & Oncology Authors: Source Type: research