Hookworm infection as a model for deepen knowledge of iron metabolism and erythropoiesis in anemia

In this study we investigated the effects of hookworm infection on iron metabolism and how the hosts response to anemia is affected using hamsters infected with Ancylostoma ceylanicum as a model. Our data revealed interesting relationships between infection-induced anemia, erythropoiesis, iron metabolism, and immune modulation, such that the elevated production of erythropoietin (EPO) in renal tissue indicated intensified erythropoiesis in response to anemia. Additionally, the increased expression of the erythroferrone (ERFE) gene in the spleen suggested its involvement in iron regulation and erythropoiesis. Gene expression patterns of genes related to iron metabolism varied in different tissues, indicating tissue-specific adaptations to hypoxia. The modulation of pro-inflammatory and anti-inflammatory cytokines highlighted the delicate balance between immune response and erythropoiesis. Data derived from the investigation of changes induced in iron metabolism and stress erythropoiesis following anemia aid in our understanding of mechanisms related to blood spoliation and anemia, which could potentially be extrapolated or compared to other types or causes of anemia. These findings also contribute to our understanding of the pathophysiology of erythropoiesis in the context of blood loss.PMID:38412767 | DOI:10.1016/j.cyto.2024.156559
Source: Cytokine - Category: Molecular Biology Authors: Source Type: research