Epigallocatechin ‐3‐gallate attenuates arsenic‐induced fibrogenic changes in human kidney epithelial cells through reversal of epigenetic aberrations and antioxidant activities

Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, is known to have antioxidant and epigenetic modulation properties. Whether EGCG, through its antioxidant and epigenetic modulating activities, can attenuate fibrogenesis is not known. In this context, the novel findings of this study suggest that EGCG, through its antioxidant and epigenetic modulation capacities, has protective effects against arsenic-induced cytotoxicity and fibrogenic changes in kidney epithelial cells. AbstractRenal fibrosis is a pathogenic intermediate stage of chronic kidney disease (CKD). Nephrotoxicants including arsenic can cause kidney fibrosis through induction of oxidative stress and epigenetic aberrations. Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, is known to have antioxidant and epigenetic modulation properties. Whether EGCG, through its antioxidant and epigenetic modulating activities, can attenuate fibrogenesis is not known. Therefore, the objective of this study was to determine whether EGCG can attenuate arsenic-induced acute injury and long-term exposure associated fibrogenicity in kidney epithelial cells. To address this question, two human kidney epithelial cell lines Caki-1 and HK-2 exposed to arsenic for both acute and long-term durations were treated with EGCG. The protective effect of EGCG on arsenic-induced cytotoxicity and fibrogenicity were evaluated by measuring the cell growth, reactive oxygen species (ROS) production, genes expression, and epigenetic chan...
Source: BioFactors - Category: Biochemistry Authors: Tags: RESEARCH ARTICLE Source Type: research