Combined in vitro and in silico mechanistic approach to explore the potential of Alternaria mycotoxins alternariol and altertoxin II to hamper γH2AX formation in DNA damage signaling pathways

This study combined in vitro/in silico approaches to elucidate the potential of AOH and ATXII to induce double-strand breaks (DSBs) in HepG2 cells. Furthermore, it examines the impact of co-exposure to AOH and the DSB-inducing drug doxorubicin (Doxo) on γH2AX expression. AOH slightly increased γH2AX expression, whereas ATXII did not elicit this response. Interestingly, AOH suppressed Doxo-induced γH2AX expression, despite evidence of increased DNA damage in the comet assay. Building on these observations, AOH was postulated to inhibit γH2AX-forming kinases. Along this line, in silico analysis supported AOH potential interaction with the ATP-binding sites of these kinases and immunofluorescence experiments showed decreased intracellular phosphorylation events. Similarly, in silico results suggested that ATXII might also interact with these kinases. This study emphasizes the importance of understanding the implications of AOH-induced γH2AX expression inhibition on DNA repair processes and underscores the need for caution when interpreting γH2AX assay results.PMID:38403206 | DOI:10.1016/j.toxlet.2024.02.008
Source: Toxicology Letters - Category: Toxicology Authors: Source Type: research