Radiomics Features on Enhanced Computed Tomography Predict FOXP3 Expression and Clinical Prognosis in Patients with Head and Neck Squamous Cell Carcinoma

AbstractForkhead box P3 (FOXP3) has been identified as a novel molecular marker in various types of cancer. The present study assessed the expression of FOXP3 in patients with head and neck squamous cell carcinoma (HNSCC) and its potential as a clinical prognostic indicator, and developed a radiomics model based on enhanced computed tomography (CT) imaging. Data from 483 patients with HNSCC were downloaded from the Cancer Genome Atlas for FOXP3 prognostic analysis and enhanced CT images from 139 patients included in the Cancer Imaging Archives, which were subjected to the maximum relevance and minimum redundancy and recursive feature elimination algorithms for radiomics feature extraction and processing. Logistic regression was used to build a model for predicting FOXP3 expression. A prognostic scoring system for radiomics score (RS), FOXP3, and patient clinicopathological factors was established to predict patient survival. The area under the receiver operating characteristic (ROC) curve (AUC) and calibration curve and decision curve analysis (DCA) were used to evaluate model performance. Furthermore, the relationship between FOXP3 and the immune microenvironment, as well as the association between RS and immune checkpoint-related genes, was analyzed. Results of analysis revealed that patients with HNSCC and high FOXP3 mRNA expression exhibited better overall survival. Immune infiltration analysis revealed that FOXP3 had a positive correlation with CD4 + and CD8 + T ...
Source: Journal of Digital Imaging - Category: Radiology Source Type: research