Mitochondrial transfer and implications for muscle function in idiopathic inflammatory myopathies

Clin Exp Rheumatol. 2024 Jan 25. doi: 10.55563/clinexprheumatol/5lfq5x. Online ahead of print.ABSTRACTImpairment in cellular bioenergetics as either the cause, consequence, or major contributor of tissue damage has drawn increasing scientific curiosity across aging and chronic health conditions, with mitochondrial dysfunction emerging as a central mechanism in the pathogenesis of a variety of inflammatory and degenerative disorders. Beyond bioenergetics, mitochondria play critical regulatory roles in programmed cell death of dysfunctional/defective cells as well as in metabolite synthesis and metabolic signalling. Further, extra-cellular exposure to fragmentation of injured mitochondria is associated with incitement of systemic and organ-based inflammation. Thus, mitochondrial function has recently drawn intense, spectral scientific interest as an integral component across maladies.In muscle, mitochondrial dysfunction is clinically associated with atrophy and diminished endurance. Direct myo-histopathological evidence characterising loss of mitochondrial integrity as a hallmark of muscle compromise was first noticed in inclusion body myositis (IBM). This was followed by the discovery of multiple deletions in mitochondrial DNA in sarcopenia, IBM, and other inflammatory myopathies, like dermatomyositis. Though fraught with bioethical considerations, the transplant technology of mitochondrial transfer is swiftly gaining prominence in cellular biology and muscle physiology to rem...
Source: Clinical and Experimental Rheumatology - Category: Rheumatology Authors: Source Type: research