Characterization of the < em > Pneumocystis jirovecii < /em > and < em > Pneumocystis murina < /em > phosphoglucomutases (Pgm2s): a potential target for < em > Pneumocystis < /em > therapy

Antimicrob Agents Chemother. 2024 Jan 23:e0075623. doi: 10.1128/aac.00756-23. Online ahead of print.ABSTRACTPneumocystis cyst life forms contain abundant β-glucan carbohydrates, synthesized using β-1,3 and β-1,6 glucan synthase enzymes and the donor uridine diphosphate (UDP)-glucose. In yeast, phosphoglucomutase (PGM) plays a crucial role in carbohydrate metabolism by interconverting glucose 1-phosphate and glucose 6-phosphate, a vital step in UDP pools for β-glucan cell wall formation. This pathway has not yet been defined in Pneumocystis. Herein, we surveyed the Pneumocystis jirovecii and Pneumocystis murina genomes, which predicted a homolog of the Saccharomyces cerevisiae major PGM enzyme. Furthermore, we show that PjPgm2p and PmPgm2p function similarly to the yeast counterpart. When both Pneumocystis pgm2 homologs are heterologously expressed in S. cerevisiae pgm2Δ cells, both genes can restore growth and sedimentation rates to wild-type levels. Additionally, we demonstrate that yeast pgm2Δ cell lysates expressing the two Pneumocystis pgm2 transcripts individually can restore PGM activities significantly altered in the yeast pgm2Δ strain. The addition of lithium, a competitive inhibitor of yeast PGM activity, significantly reduces PGM activity. Next, we tested the effects of lithium on P. murina viability ex vivo and found the compound displays significant anti-Pneumocystis activity. Finally, we demonstrate that a para-aryl derivative (ISFP10) with known inhibitor...
Source: Antimicrobial Agents and Chemotherapy - Category: Microbiology Authors: Source Type: research