The Function of Circular RNAs in Myocardial Ischemia –Reperfusion Injury: Underlying Mechanisms and Therapeutic Advancement

AbstractMyocardial ischemia reperfusion injury (MIRI) represents a prevalent and severe cardiovascular condition that arises primarily after myocardial infarction recanalization, cardiopulmonary bypass surgery, and both stable and unstable angina pectoris. MIRI can induce malignant arrhythmias and heart failure, thereby increasing the morbidity and mortality rates associated with cardiovascular diseases. Hence, it is important to assess the potential pathological mechanisms of MIRI and develop effective treatments. The role of circular RNAs (circRNAs) in MIRI has increasingly become a topic of interest in recent years. Moreover, significant evidence suggests that circRNAs play a critical role in MIRI pathogenesis, thereby representing a promising therapeutic target. This review aimed to provide a comprehensive overview of the current understanding of the role of circRNAs in MIRI and discuss the mechanisms through which circRNAs contribute to MIRI development and progression, including their effects on apoptosis, inflammation, oxidative stress, and autophagy. Furthermore, the potential therapeutic applications of circRNAs in MIRI treatment, including the use of circRNA-based therapies and modulation of circRNA expression levels, have been explored. Overall, this paper highlights the importance of circRNAs in MIRI and underscores their potential as novel therapeutic targets.
Source: Cardiovascular Drugs and Therapy - Category: Cardiology Source Type: research