Amyloid- β Inhibits Synaptic Proteasomal Function in Alzheimer ' s Disease

Cells contain many proteasomes, one portion of a broad array of repair and quality control mechanisms. The proteasome is a hollow, capped cylindrical structure made of many component proteins. It admits entry only to proteins that have been decorated with the addition of a ubiquitin molecule. Once inside the proteasome's central chamber, the ubiquinated protein is disassembled into short peptides suitable for reuse in the synthesis of other proteins. This ubiquitin-proteasome system is necessary to prevent the buildup of damaged, misfolded, unfolded, or otherwise unwanted proteins. It has been noted that proteasomal function is impaired in Alzheimer's disease patients, and that inhibition of proteasomal function, such as by downregulating expression of specific proteasomal component proteins, produces symptoms akin to those of neurodegenerative conditions. In today's open access paper, researchers further explore this topic, showing that the amyloid-β associated with Alzheimer's disease is capable of inhibiting proteasomal function in the synapses that link neurons in the brain. This points to the merits of both clearance of amyloid-β and also the development of ways to augment proteasomal function, such as by increased expression of some of its component proteins. Synaptic proteasome is inhibited in Alzheimer's disease models and associates with memory impairment in mice The proteasome plays key roles in synaptic plasticity and memory by regulating p...
Source: Fight Aging! - Category: Research Authors: Tags: Medicine, Biotech, Research Source Type: blogs