Fly clock, my clock, and lamin B receptor

J Genet. 2024;103:01.ABSTRACTIn the fruit fly Drosophila melanogaster, circadian rhythm was disrupted when the inner nuclear membrane protein lamin B receptor (LBR) was depleted from its clock neurons (Proc. Natl. Acad. Sci. USA 118, e2019756118. 2021; https://doi.org/10. 1073/pnas.2019756118 and Research 6, 0139, 2023; https://doi.org/10.34133/research.0139). Ordinarily, the clock proteinPERIOD (PER) forms foci close to the inner nuclear membrane in the circadian clock's repression phase. The size, number, and location of foci near the nuclear membrane oscillate with a 24-h rhythm. When LBR was absent the foci did not form. The PER foci bring per and other clock genes close to the nuclear envelope, where their transcription is silenced. Then, in the circadian clock's activation phase, the PER protein gradually gets degraded and the foci disappear. The clock genes, including per, relocate to the nucleus interior where they resume transcription. Rhythmic re-positioning of clock genes between nucleus periphery and interior, correlates with their repression and activation in the circadian cycle. Absence of LBR disrupted this rhythm. Phosphorylation of PER promoted the formation of foci whereas dephosphorylation by protein phosphatase 2A causedthem to disappear. LBR promoted focus formation by destabilizing the catalytic subunit of protein phosphatase 2A. The lbr gene is no stranger to this journal. The first hint that vertebrate LBR is also a sterol biosynthesis enzyme, specific...
Source: Journal of Genetics - Category: Genetics & Stem Cells Authors: Source Type: research