Rosmarinic Acid Liposomes Downregulate Hepcidin Expression via BMP6-SMAD1/5/8 Pathway in Mice with Iron Overload

The objective of this study is to examine the potential protective effect of rosmarinic acid (RosA) encapsulated within nanoliposomes (RosA-LIP) on hepatic damage induced by iron overload. The characteristics, stability, and release of RosA-LIP in vitro were identified. The mice were randomly assigned to five groups: Control, Model, Model+DFO (DFO), Model+RosA (RosA), and Model+RosA-LIP (RosA-LIP). The iron overload model was induced by administering iron dextran (i.p.). The DFO, RosA, and RosA-LIP groups received iron dextran and were subsequently treated with DFO, RosA, and RosA-LIP for 14 days. We developed a novel formulation of RosA-LIP that exhibited stability and controlled release properties. Firstly, RosA-LIP improved liver function and ameliorated pathological changes in a mouse model of iron overload. Secondly, RosA-LIP demonstrated the ability to enhance the activities of T-SOD, GSH-Px, and CAT, while reducing the levels of MDA and 4-HNE, thereby effectively mitigating oxidative stress damage induced by iron overload. Thirdly, RosA-LIP reduced hepatic iron levels by downregulating FTL, FTH, and TfR1 levels. Additionally, RosA-LIP exerted a suppressive effect on hepcidin expression through the BMP6-SMAD1/5/8 signaling pathway. Furthermore, RosA-LIP upregulated FPN1 expression in both the liver and duodenum, thereby alleviating iron accumulation in these organs in mice with iron overload. Notably, RosA exhibited a comparable iron chelation effect, and RosA-LIP demon...
Source: Applied Biochemistry and Biotechnology - Category: Biochemistry Authors: Source Type: research