Investigating the Regenerative Prowess of Jellyfish

Finding out exactly how some species can regenerate lost body parts without loss of function may provide means to enhance human regeneration, and possibly also tissue maintenance in old age. It is too early to say whether gains are possible in the near future, or whether introducing new capacities into human biochemistry in this way will prove to be a very hard task. Most research into exceptional regenerative capabilities is focused on salamanders and zebrafish, with some work going into the basis for unusual mammalian regeneration such as that exhibited by MRL mice and African spiny mice. These are not the only highly regenerative species, however, and here researchers discuss the biochemistry of regeneration in a species of small jellyfish. Blastema formation is a crucial process that provides a cellular source for regenerating tissues and organs. While bilaterians have diversified blastema formation methods, its mechanisms in non-bilaterians remain poorly understood. Cnidarian jellyfish, or medusae, represent early-branching metazoans that exhibit complex morphology and possess defined appendage structures highlighted by tentacles with stinging cells (nematocytes). Here, we investigate the mechanisms of tentacle regeneration, using the hydrozoan jellyfish Cladonema pacificum. We show that proliferative cells accumulate at the tentacle amputation site and form a blastema composed of cells with stem cell morphology. Experiments indicate that most repair-spec...
Source: Fight Aging! - Category: Research Authors: Tags: Daily News Source Type: blogs