NOX4 alleviates breast cancer cell aggressiveness by co-ordinating mitochondrial turnover through PGC1 α/Drp1 axis

This study investigates the complex molecular mechanism by which NADPH oxidase 4 (NOX4), a major ROS producer in mitochondria, affects the aggressiveness of luminal and triple-negative breast cancer cells (TNBCs). We found that NOX4 expression was differentially regulated in luminal and TNBC cells, with a positive correlation to their epithelial characteristics. Time dependent analysis revealed that TNBCs exhibits higher steady-state ROS levels than luminal cells, but NOX4 silencing increased ROS levels in luminal breast cancer cells and enhanced their ability to migrate and invade. In contrast, NOX4 over expression in TNBCs had the opposite effect. The mouse tail-vein experiment showed that the group injected with NOX4 silenced luminal cells had a higher number of lung metastases compared to the control group. Mechanistically, NOX4 enhanced PGC1α dependent mitochondrial biogenesis and attenuated Drp1-mediated mitochondrial fission in luminal breast cancer cells, leading to an increased mitochondrial mass and elongated mitochondrial morphology. Interestingly, NOX4 silencing increased mitochondrial ROS (mtROS) levels without affecting mitochondrial (Δψm) and cellular integrity. Inhibition of Drp1-dependent fission with Mdivi1 reversed the effect of NOX4-dependent mitochondrial biogenesis, dynamics, and migration of breast cancer cells. Our findings suggest that NOX4 expression diminishes from luminal to a triple negative state, accompanied by elevated ROS levels, which may ...
Source: Cellular Signalling - Category: Cytology Authors: Source Type: research