Mfsd7b facilitates choline transport and missense mutations affect choline transport function

Cell Mol Life Sci. 2023 Dec 6;81(1):3. doi: 10.1007/s00018-023-05048-4.ABSTRACTMFSD7b belongs to the Major Facilitator Superfamily of transporters that transport small molecules. Two isoforms of MFSD7b have been identified and they are reported to be heme exporters that play a crucial role in maintaining the cytosolic and mitochondrial heme levels, respectively. Mutations of MFSD7b (also known as FLVCR1) have been linked to retinitis pigmentosa, posterior column ataxia, and hereditary sensory and autonomic neuropathy. Although MFSD7b functions have been linked to heme detoxification by exporting excess heme from erythroid cells, it is ubiquitously expressed with a high level in the kidney, gastrointestinal tract, lungs, liver, and brain. Here, we showed that MFSD7b functions as a facilitative choline transporter. Expression of MFSD7b slightly but significantly increased choline import, while its knockdown reduced choline influx in mammalian cells. The influx of choline transported by MFSD7b is dependent on the expression of choline metabolizing enzymes such as choline kinase (CHKA) and intracellular choline levels, but it is independent of gradient of cations. Additionally, we showed that choline transport function of Mfsd7b is conserved from fly to man. Employing our transport assays, we showed that missense mutations of MFSD7b caused reduced choline transport functions. Our results show that MFSD7b functions as a facilitative choline transporter in mammalian cells.PMID:3805...
Source: Cellular and Molecular Life Sciences : CMLS - Category: Cytology Authors: Source Type: research