Automatic segmentation of white matter hyperintensities in T2-FLAIR with AQUA: A comparative validation study against conventional methods

In this study, we propose AQUA, a deep learning model designed for fully automatic segmentation of WMHs from T2-FLAIR scans, which improves upon our previous study for small lesion detection and incorporating a multicenter approach. AQUA implements a two-dimensional U-Net architecture and uses patch-based training. Additionally, the network was modified to include Bottleneck Attention Module on each convolutional block of both the encoder and decoder to enhance performance for small-sized WMH. We evaluated the performance and robustness of AQUA by comparing it with five well-known supervised and unsupervised methods for automatic segmentation of WMHs (LGA, LPA, SLS, UBO, and BIANCA). To accomplish this, we tested these six methods on the MICCAI 2017 WMH Segmentation Challenge dataset, which contains MRI images from 170 elderly participants with WMHs of presumed vascular origin, and assessed their robustness across multiple sites and scanner types. The results showed that AQUA achieved superior performance in terms of spatial (Dice = 0.72) and volumetric (logAVD = 0.10) agreement with the manual segmentation compared to the other methods. While the recall and F1-score were moderate at 0.49 and 0.59, respectively, they improved to 0.75 and 0.82 when excluding small lesions (≤ 6 voxels). Remarkably, despite being trained on a different dataset with different ethnic backgrounds, lesion loads, and scanners, AQUA's results were comparable to the top 10 ranked methods of the MICCA...
Source: Brain Research Bulletin - Category: Neurology Authors: Source Type: research