PRIMA-1 synergizes olaparib-induced cell death in p53 mutant triple negative human breast cancer cell line via restoring p53 function, arresting cell cycle, and inducing apoptosis

This study concerned with assessing the effect of restoring p53 using PRIMA-1 on the anti-cancer activity of olaparib against TP53-mutant triple negative breast cancer (TNBC) cells and exploring the optimum synergistic concentrations and the underlying mechanism. Human BC cell lines, MDA-MB-231 with mutated TP53 gene, and MCF-7 with wild-type TP53 gene were treated with olaparib and/or PRIMA-1. The IC50 value for olaparib was significantly decreased by PRIMA-1 in MDA-MB-231 cells compared to MCF-7 cells. Contrary to MCF-7 cells, co-treatment with olaparib and PRIMA-1 had a synergistic anti-proliferative effect in MDA-MB-231 at all tested concentrations with the best synergistic combination at 45 and 8.5 µM, respectively, and furthermore PRIMA-1 enhanced olaparib-induced apoptosis. This synergistic apoptotic effect was associated with a significant boost in mRNA expression of TP53 gene, cell cycle arrest at G2/M phase, modulation of BRCA-1, BAX and Bcl2 proteins expressions, and induction of active caspase-3. These results present a clue for the utility of combined olaparib and PRIMA-1 in treatment of TP53-mutant TNBC invitro. PRIMA-1 triggers olaparib-induced MDA-MB-231 cell death in a synergistic manner via restoring TP53, decreasing BRCA-1 expression, cell cycle arrest, and enhancement of apoptosis via p53/BAX/Bcl2/caspase 3 pathway.PMID:37818839 | DOI:10.1139/cjpp-2023-0031
Source: Canadian Journal of Physiology and Pharmacology - Category: Drugs & Pharmacology Authors: Source Type: research