Emerging alternatives to traditional anthelmintics: the in vitro antiparasitic activity of silver and selenium nanoparticles, and pomegranate (Punica granatum) peel extract against Haemonchus contortus

This study investigated the in vitro anthelmintic activity of silver nanoparticles (AgNPs), selenium nanoparticles (SeNPs), and pomegranate peel extract (Punica granatum; PPE) on different stages ofH. contortus: eggs, larvae, and adults. The in vitro anthelmintic efficacy was evaluated using the egg hatching inhibition assay (EHA), the third larval stage paralysis assay (LPA), and the adult worm motility inhibition assay (WMI). Six dilutions of PPE were utilized for EHA, LPA, and WMI, ranging from 0.25 to 6 mg/ml. AgNPs dilutions ranged from 0.00001 to 1.0 μg/ml for EHA and LPA and 1 to 25 μg/ml for WMI. SeNPs were utilized at dilutions of 1, 5, 10, and 15 μg/ml for EHA, LPA, and WMI. The results showed that the lowest concentration of AgNPs, SeNPs, and PPE significantly inhibited egg hatching. To further assess larvicidal activity, AgNPs at the hi ghest concentration of 1 μg/ml induced a strong larvicidal effect, as did SeNPs at the lowest concentration. On the contrary, PPE displayed a significant larvicidal effect at 1 mg/ml compared to the control. The percentage mortality of adultH. contortus was measured as follows (mortality (%) = the number of dead adultH. contortus/total number of adultH. contortus per test × 100). The death of the adultH. contortus was determined by the absence of motility. AdultH. contortus mortality percentage was also significantly affected by all three agents when compared to the control. The AgNPs, SeNPs, and PPE have effective antiparasit...
Source: Tropical Animal Health and Production - Category: Veterinary Research Source Type: research