Afferent neurons of the kidney with impaired firing pattern in inflammation - role of sodium currents?

Pflugers Arch. 2023 Sep 6. doi: 10.1007/s00424-023-02852-6. Online ahead of print.ABSTRACTPeripheral neurons with renal afferents exhibit a predominantly tonic firing pattern of higher frequency that is reduced to low frequencies (phasic firing pattern) in renal inflammation. We wanted to test the hypothesis that the reduction in firing activity during inflammation is due to high-activity tonic neurons switching from higher to low frequencies depending on altered sodium currents. We identified and cultivated afferent sensory neurons with renal projections from the dorsal root ganglia (Th11-L2). Cultivated neurons were incubated with the chemokine CXCL1 (1,5 nmol/ml) for 12 h. We characterized neurons as "tonic," i.e., sustained action potential (AP) firing, or "phasic," i.e., < 5 APs upon stimulation in the current clamp. Their membrane currents were investigated in a voltage clamp. Data analyzed: renal vs. non-renal and tonic vs. phasic neurons. Renal afferent neurons exposed to CXCL1 showed a decrease in tonic firing pattern (CXCL1: 35,6% vs. control: 57%, P < 0.05). Na+ and K+ currents were not different between control renal and non-renal DRG neurons. Phasic neurons exhibited higher Na+ and K+ currents than tonic resulting in shorter APs (3.7 ± 0.3 vs. 6.1 ± 0.6 ms, P < 0.01). In neurons incubated with CXCL1, Na+ and K+ peak current density increased in phasic (Na+: - 969 ± 47 vs. - 758 ± 47 nA/pF, P < 0.01; K+: 707 ± 22 vs. 558 ± 31 nA/pF, P < 0.01),...
Source: Pflugers Archiv : European Journal of Physiology - Category: Physiology Authors: Source Type: research