Roles of follicle stimulating hormone and sphingosine 1-phosphate co-administered in the process in mouse ovarian vitrification and transplantation

J Ovarian Res. 2023 Aug 24;16(1):173. doi: 10.1186/s13048-023-01206-1.ABSTRACTSome major challenges of ovarian tissue vitrification and transplantation include follicle apoptosis induced by cryopreservation and ischemia-reperfusion injury, as well as ovarian follicle loss during post-transplantation. This research aimed to investigate the protective effects and underlying mechanisms of follicle-stimulating hormone (FSH) and Sphingosine-1-phosphate (S1P) on vitrified and post-transplantation ovaries. Ovaries from 21-day-old mice were cryopreservation by vitrification with 0.3 IU/mL FSH, 2 µM S1P, and 0.3 IU/mL FSH + 2 µM S1P, respectively, for follicle counting and detection of apoptosis-related indicators. The results demonstrated that FSH and S1P co-intervention during the vitrification process could preserve the primordial follicle pool and inhibit follicular atresia by suppressing cell apoptosis. The thawed ovaries were transplanted under the renal capsule of 6-8 week-old ovariectomized mice and removed 24 h or 7 days after transplantation. The results indicated that FSH and S1P co-intervention can inhibit apoptosis and autophagy in ovaries at 24 h after transplantation, and promote follicle survival by up-regulating Cx37 and Cx43 expression, enhanced angiogenesis in transplanted ovaries by promoting VEGF expression, as well as increased the E2 levels to restore ovarian endocrine function at 7 days after transplantation. The hypoxia and ischemia cell model was establishe...
Source: Cell Research - Category: Cytology Authors: Source Type: research