Diacylglycerol acyltransferase (DGAT) in Crangon crangon and Pandalus montagui (Decapoda, Caridea) - Implications for lipid storage capacities and life history traits

Comp Biochem Physiol B Biochem Mol Biol. 2023 Jul 20:110878. doi: 10.1016/j.cbpb.2023.110878. Online ahead of print.ABSTRACTLipids play essential roles in cell-structuring, cell-signaling, and as efficient metabolic energy stores. Lipid storage capacities determine life history traits of organisms and, thus, their ecological function. Among storage lipids, triacylglycerols (TAGs) are widespread in marine invertebrates. However, abilities to accumulate TAGs can vary even between closely related species, such as the caridean shrimps Crangon crangon and Pandalus montagui. The first species shows low TAG levels throughout the year in the main storage organ, the midgut gland, while the latter accumulates high TAG-levels, peaking in summer. TAGs synthesis is facilitated by the terminal step of the Kennedy-pathway, where the enzyme diacylglycerol-acyltransferase (DGAT) catalyzes the esterification of diacylglycerols with activated fatty acids. We investigated DGAT activity in the midgut gland using a fluorescent enzyme assay. Sequence information was extracted from whole transcriptome shotgun assembly data, that was publicly available on NCBI, and catalytic properties were deduced from molecular structure analysis. C. crangon showed significantly lower TAG synthesis rates than P. montagui, which explains the native TAG levels. Transcriptome data yielded several isoforms of DGAT enzymes in both species. C. crangon DGAT showed point mutations, which are capable of obstructing the cata...
Source: Comparative biochemistry and physiology. Part B, Biochemistry and molecular biology. - Category: Biochemistry Authors: Source Type: research