The Guillain-Mollaret triangle: a key player in motor coordination and control with implications for neurological disorders

AbstractThe dentato-rubro-olivary pathway, also known as the Guillain-Mollaret triangle (GMT) or myoclonic triangle, consists of the dentate nucleus, the red nucleus, and the inferior olivary nucleus (ION). GMT is important for motor coordination and control, and abnormalities in this network can lead to various neurological disorders. The present study followed a systematic approach in conducting a review on GMT studies. The inclusion criteria were limited to human subjects with primary objectives of characterizing and evaluating GMT syndromes, and the methodology used was not a determining factor for eligibility. The search strategy used MeSH terms and keywords relevant to the study ’s objective in various databases until August 2022. A total of 76 studies were included in the review after assessing 527 articles for eligibility based on the final inclusion criteria. Most of the studies evaluated the GMT in human subjects, with the majority utilizing magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), or combination of them. The review found that Hypertrophic olivary degeneration (HOD), a common consequence of GMT damage, has diverse underlying causes, including stroke, brainstem cavernous malformations, and structural impairments. Palatal tremor, ocular my oclonus, ataxia, nystagmus, and vertigo were frequently reported symptoms associated with HOD. This systematic review provides comprehensive insights into the association between GMT and various neurologic...
Source: Neurosurgical Review - Category: Neurosurgery Source Type: research