A novel Gateaux derivatives with efficient DCNN-Resunet method for segmenting multi-class brain tumor

AbstractIn hospitals and pathology, observing the features and locations of brain tumors in Magnetic Resonance Images (MRI) is a crucial task for assisting medical professionals in both treatment and diagnosis. The multi-class information about the brain tumor is often obtained from the patient ’s MRI dataset. However, this information may vary in different shapes and sizes for various brain tumors, making it difficult to detect their locations in the brain. To resolve these issues, a novel customized Deep Convolution Neural Network (DCNN) based Residual-Unet (ResUnet) model with Transfe r Learning (TL) is proposed for predicting the locations of the brain tumor in an MRI dataset. The DCNN model has been used to extract the features from input images and select the Region Of Interest (ROI) by using the TL technique for training it faster. Furthermore, the min-max normalizing approac h is used to enhance the color intensity value for particular ROI boundary edges in the brain tumor images. Specifically, the boundary edges of the brain tumors have been detected by utilizing Gateaux Derivatives (GD) method to identify the multi-class brain tumors precisely. The proposed scheme has been validated on two datasets namely the brain tumor, and Figshare MRI datasets for detecting multi-class Brain Tumor Segmentation (BTS).The experimental results have been analyzed by evaluation metrics namely, accuracy (99.78, and 99.03), Jaccard Coefficient (93.04, and 94.95), Dice Factor Coeffi c...
Source: Medical and Biological Engineering and Computing - Category: Biomedical Engineering Source Type: research