Omicron variant evolution on vaccines and monoclonal antibodies

AbstractThe severe acute respiratory syndrome coronavirus (SARS-CoV)-2 responsible for the global COVID-19 pandemic has caused almost 760 million confirmed cases and 7 million deaths worldwide, as of end-February 2023. Since the beginning of the first COVID-19 case, several virus variants have emerged: Alpha (B1.1.7), Beta (B135.1), Gamma (P.1), Delta (B.1.617.2) and then Omicron (B.1.1.529) and its sublineages. All variants have diversified in transmissibility, virulence, and pathogenicity. All the newly emerging SARS-CoV-2 variants appear to contain some similar mutations associated with greater"evasiveness" of the virus to immune defences. From early 2022 onward, several Omicron subvariants named BA.1, BA.2, BA.3, BA.4, and BA.5, with comparable mutation forms, have followed. After the wave of contagions caused by Omicron BA.5, a new Indian variant named Centaurus BA.2.75 and its new subvariant BA.2.75.2, a second-generation evolution of the Omicron variant BA.2, have recently been identified. From early evidence, it appears that this new variant has higher affinity for the cell entry receptor ACE-2, making it potentially able to spread very fast. According to the latest studies, the BA.2.75.2 variant may be able to evade more antibodies in the bloodstream generated by vaccination or previous infection, and it may be more resistant to antiviral and monoclonal antibody drug treatments. In this manuscript, the authors highlight and describe the latest evidences and...
Source: Inflammopharmacology - Category: Drugs & Pharmacology Source Type: research