Starch modified NiFe layered double hydroxide composites for better adsorption and photocatalytic removal of reactive dye and piroxicam-20 drug

In this study, starch (S) modified NiFe-layered double hydroxide (LDH) composites were successfully synthesized by the co-precipitation method and have been examined as a catalyst for the effective adsorption of reactive blue 19 dye, reactive orange 16 dye, and piroxicam-20 NSAID from wastewater and photocatalytic degradation of reactive red 120 dye. The physicochemical properties of the prepared catalyst were assessed by XRD, FTIR, HRTEM, FE-SEM, DLS, ZETA, and BET. The coarser and more porous micrographs are shown in FESEM, indicating the homogeneous dispersion of layered double hydroxide on starch polymer chains. The S/NiFe-LDH composites have a slightly greater SBET (6.736 m2/g) than NiFe LDH (4.78 m2/g). The S/NiFe-LDH composite shows remarkable ability in the removal of reactive dyes. The band gap value of NiFe LDH, S/NiFe LDH (0.5:1), and S/NiFe LDH (1:1) composites was calculated as 2.28 eV, 1.80 eV, and 1.74 eV, respectively. The qmax assessed from Langmuir isotherm for removal of piroxicam-20 drug, reactive blue 19 dye, and reactive orange 16 was 2840 mg/g, 149.47 mg/g, and 182.4 mg/g, respectively. The activated chemical adsorption without product desorption is predicted by the Elovich kinetic model. With reactive red 120 dye, S/NiFe-LDH shows photocatalytic degradation within 3 h of irradiation of visible light with 90% removal efficiency and follows a pseudo-first-order kinetic model. The scavenging experiment confirms the involvement of electrons and holes in ph...
Source: Environmental Science and Pollution Research International - Category: Environmental Health Authors: Source Type: research