Ingestion of heat-killed pathogens confers transgenerational immunity to the pathogens via the vitellogenin-hypopharyngeal gland axis in honeybees

This study investigated whether feeding honeybees (Apis mellifera) with a heat-killed pathogen cocktail can provide them with transgenerational immunity to these pathogens. We found that vitellogenin (Vg) and defensin-1 were highly upregulated in nurse bees upon feeding them with a cocktail of heat-killed Ascosphaera apis and Paenibacillus larvae (A + P cocktail). Pathogen-pattern-recognition receptor genes in the Toll signaling pathway were upregulated in nurse bees upon ingestion of the A + P cocktail. In the nurse bees of the hives supplied with the A + P cocktail, Vg was upregulated in the fat body, and the defensin-1 expression and Vg uptake in the hypopharyngeal glands were induced. Consequently, the major proteins in royal jelly were upregulated. In addition, defensin-1 was upregulated in the queen larvae and young worker larvae in these hives. In correlation, the young worker larvae showed high pathogen resistance to P. larvae infection. Thus, our findings imply that introduction of a heat-killed pathogen cocktail into hives is an efficient strategy for conferring honeybees with social immunity through TGIP.PMID:37031709 | DOI:10.1016/j.dci.2023.104709
Source: Developmental and Comparative Immunology - Category: Allergy & Immunology Authors: Source Type: research