ADAMTS-7 deficiency attenuates thoracic aortic aneurysm and dissection in mice

AbstractThoracic aortic aneurysm and dissection (TAAD) is a life-threatening cardiovascular disease with severe extracellular matrix (ECM) remodeling that lacks efficient early stage diagnosis and nonsurgical therapy. A disintegrin and metalloproteinase with thrombospondin motif 7 (ADAMTS-7) is recognized as a novel locus for human coronary artery atherosclerosis. Previous work by us and others showed that ADAMTS-7 promoted atherosclerosis, postinjury neointima formation, and vascular calcification. However, whether ADAMTS-7 is involved in TAAD pathogenesis is unknown. We aimed to explore the alterations in ADAMTS-7 expression in human and mouse TAAD, and investigate the role of ADAMTS-7 in TAAD formation. A case –control study of TAAD patients (N = 86) and healthy participants (N = 88) was performed. The plasma ADAMTS-7 levels were markedly increased in TAAD patients within 24 h and peaked in 7 days. A TAAD mouse model was induced with 0.5% β-aminopropionitrile (BAPN) in drinking water. ELISA analysis of mouse plasma, Western blotting, and immunohistochemical stainin g of aorta showed an increase in ADAMTS-7 in the early stage of TAAD. Moreover, ADAMTS-7-deficient mice exhibited significantly attenuated TAAD formation and TAAD rupture-related mortality in both male and female mice, which was accompanied by reduced artery dilation and inhibited elastin degradatio n. ADAMTS-7 deficiency caused repressed inflammatory response and complement system activation during...
Source: Journal of Molecular Medicine - Category: Molecular Biology Source Type: research