The optimization of PLGA knitted mesh reinforced ‐collagen/chitosan scaffold for the healing of full‐thickness skin defects

This study was conducted to optimize the configuration of PLGA knitted mesh-collagen-chitosan scaffold (PCCS), and explore possible mechanisms. PLGA knitted mesh was embedded in CCS through freeze-drying method. With the PLGA knitted mesh located at the bottom, middle, or both bottom and top layers of the CCS, three kinds of PCCS were developed. A full-thickness skin wound model was established in Sprague Dawley rats to evaluate the therapeutic effects of different PCCS against CCS. The properties and healing effect of the scaffolds were investigated. Several growth factors and chemotactic factors, that is, VEGF, PDGF, CD31, α-SMA, TGF-β1, and TGF-β3 were analyzed and evaluated. Re-epithelialization and angiogenesis were observed in all animal groups with the treatment of three kinds of PCCS scaffolds and the CCS scaffold (control). The protein and gene expression of VEGF, PDGF, CD31, α-SMA, TGF-β1, and TGF-β3 sho wed different dynamics at different time points. Based on the healing effects and the expression of growth factors and chemotactic factors, scaffold with the PLGA knitted mesh located at the bottom layer of the CCS demonstrated the best healing effect and accelerated re-epithelialization and angioge nesis among all the scaffolds evaluated. PCCS with the PLGA mesh located in the bottom layer of the scaffold accelerated wound healing by creating a more supportive environment for re-epithelialization and angiogenesis.
Source: Journal of Biomedical Materials Research Part B: Applied Biomaterials - Category: Materials Science Authors: Tags: RESEARCH ARTICLE Source Type: research