Chlorpyrifos induces neuronal cell death via both oxidative stress and Akt activation downstream-regulated CHOP-triggered apoptotic pathways

In this study, CPF exposure (10-400 μM) significantly reduced Neuro-2a cell viability and induced apoptotic events, including the increase in caspase-3 activity, apoptotic cell population, and cleavage of caspase-3/-7 and PARP. Exposure of Neuro-2a cells to CPF also triggered CHOP activation. Transfection with CHOP-specific siRNA markedly suppressed the expression of CHOP, and attenuated cytotoxicity and apoptotic events in CPF-exposed Neuro-2a cells. Furthermore, CPF exposure obviously evoked the phosphorylation of Akt as well as ROS generation in a time-dependent manner. Pretreatment with LY294002 (an Akt inhibitor) effectively attenuated the CPF-induced Akt phosphorylation, CHOP activation, and apoptotic events, but not that ROS production. Of note, buffering the ROS generation with antioxidant N-acetylcysteine effectively prevented the CPF-induced ROS generation, CHOP activation, and apoptotic events, but not that the Akt phosphorylation. Collectively, these findings indicate that CPF exposure exerts neuronal cytotoxicity via the independent pathways of ROS generation and Akt activation downstream-regulated CHOP-triggered apoptosis, ultimately leading to neuronal cell death.PMID:36252918 | DOI:10.1016/j.tiv.2022.105483
Source: Toxicology in Vitro - Category: Toxicology Authors: Source Type: research