Simultaneous removal of cationic and anionic dyes from simulated industrial effluents using a nature-inspired adsorbent

Environ Res. 2022 Aug 8:113966. doi: 10.1016/j.envres.2022.113966. Online ahead of print.ABSTRACTAlginate-grafted polyaniline (Alg-g-PANI) microparticles were synthesized through the grafting of aniline onto functionalized Alg followed by double crosslinking by glutaraldehyde and calcium chloride. The performance of the developed microparticles as adsorbent in simultaneous removal of malachite green (MG) and congo red (CR) dyes were examined by the batch method. Experimental parameters, including adsorbent amount, pH, initial dyes concentrations, and contact time were optimized. Langmuir and Freundlich adsorption models were employed to explore the equilibrium isotherm. As the Langmuir model results, the maximum adsorption capacities (Qm) of microparticles for the MG and CR dyes were obtained as 578.3 and 409.6 mgg-1, respectively. Adsorption kinetics for both dyes were well-fitted with the pseudo-second-order model that confirm the rate-limiting step might be the chemical adsorption. The adsorbent was regenerated via desorption process and was reusable five times without a substantial decrease in its adsorption efficacy in first three cycles. Adsorbent-dyes interactions were computationally evaluated using Gromacs package, and it was found that both MG and CR are able to interact strongly with the adsorbent. In accordance with experimental results, simulation data revealed that MG can be removed more efficiently than those of the CR. As the experimental results, we could con...
Source: Environmental Research - Category: Environmental Health Authors: Source Type: research