Gemcitabine induces polarization of mouse peritoneal macrophages towards M1-like and confers antitumor property by inducing ROS production

In this study,  mouse-derived PMs were treated with GEM ex vivo to analyze the polarization status. Production of GEM-induced reactive oxygen species (ROS) and reactive nitrogen species was evaluated using DCFH-DA, DAF-FM, and Griess assay. Antitumor effects of PMs on UN-KC-6141and UN-KPC-961 murine PC cells were evaluated in presence and absence of GEM in vitro. Similarly, effect of GEM on human THP-1 macrophage polarization and its tumoricidal effect was studied in vitro. Furthermore, the effect of GEM-treated PMs on peritoneal metastasis of UN-KC-6141 cells was evaluated in a syngeneic mouse model of PC. GEM upregulated M1 phenotype-associated molecular markers (Tnf- α andInos)in vitro in PMs obtained from na ïve mouse. Moreover, IL-4-induced M2-like PMs reverted to M1-like after GEM treatment. Co-culture of UN-KC-6141 and UN-KPC-961 cancer cells with PMs in the presence of GEM increased apoptosis of these cells, whereas cell death was markedly reduced afterN-acetyl-l-cysteine treatment. Corroborating these findings co-culture of GEM-treated human THP-1 macrophages also induced cell death in MIAPaCa-2 cancer cells. GEM-treated PMs injected intraperitoneally along with UN-KC-6141 cells into mice extended survival period, but did not stop disease progression and mortality. Together,  GEM induced M1-like polarization of PMs from naive and/or M2-polarized PMs in a ROS-dependent manner. GEM-induced M1-like PMs prompted cytotoxicity in PC cells and delayed disease progressio...
Source: Clinical and Experimental Metastasis - Category: Cancer & Oncology Source Type: research