Design and synthesis of NAD(P)H: Quinone oxidoreductase (NQO1)-activated prodrugs of 23-hydroxybetulinic acid with enhanced antitumor properties

Eur J Med Chem. 2022 Jun 30;240:114575. doi: 10.1016/j.ejmech.2022.114575. Online ahead of print.ABSTRACTA series of NQO1 selectively activated prodrugs were designed and synthesized by introducing indolequinone moiety to the C-3, C-23 or C-28 position of 23-hydroxybetulinic acid (23-HBA) and its analogues. Among them, the representative compound 32j exhibited significant antiproliferative activities against NQO1-overexpressing HT-29 cells and A549 cells, with IC50 values of 1.87 and 2.36 μM, respectively, which were 20-30-fold more potent than those of parent compound 23-HBA. More importantly, it was demonstrated in the in vivo antitumor experiment that 32j effectively suppressed the tumor volume and largely reduced tumor weight by 72.69% with no apparent toxicity, which was more potent than the positive control 5-fluorouracil. This is the first breakthrough in the improvement of in vivo antitumor activities of 23-HBA derivatives. The further molecular mechanism study revealed that 32j blocked cell cycle arrest at G2/M phase, induced cell apoptosis, depolarized mitochondria and elevated the intracellular ROS levels in a dose-dependent manner. Western blot analysis indicated that 32j induced cell apoptosis by interfering with the expression of apoptosis-related proteins. These findings suggest that compound 32j could be considered as a potent antitumor prodrug candidate which deserves to be further investigated for personalized cancer therapy.PMID:35803175 | DOI:10.1016/j.ej...
Source: European Journal of Medicinal Chemistry - Category: Chemistry Authors: Source Type: research