Filtered By:
Education: Academia
Management: Funding
Nutrition: Diets

This page shows you your search results in order of relevance.

Order by Relevance | Date

Total 3 results found since Jan 2013.

More Research Is Needed on Lifestyle Behaviors That Influence Progression of Parkinson's Disease
This article highlights some of these challenges in the design of lifestyle studies in PD, and suggests a more coordinated international effort is required, including ongoing longitudinal observational studies. In combination with pharmaceutical treatments, healthy lifestyle behaviors may slow the progression of PD, empower patients, and reduce disease burden. For optimal care of people with PD, it is important to close this gap in current knowledge and discover whether such associations exist. Introduction Parkinson's disease (PD) is an age-related complex progressive neurodegenerative disorder, with key p...
Source: Frontiers in Neurology - April 29, 2019 Category: Neurology Source Type: research

Orexin-A Prevents Lipopolysaccharide-Induced Neuroinflammation at the Level of the Intestinal Barrier
We examined a possible protective effect of OX-A against LPS-induced ROS formation and microglia activation. To mimic in vitro the connection between gut and brain and to study the putative effect on the cortical microglia, we used a co-culture of Caco-2 cells and primary cortical microglia with Caco-2 cells placed at the apical side of a transwell and primary cortical microglia at the basolateral side. All treatments used to study the apical vs. basal connection were applied to the apical compartment. We used DHR (10 μM, 20 min), a cell-permeable fluorogenic probe useful for the detection of ROS formation, to dete...
Source: Frontiers in Endocrinology - April 9, 2019 Category: Endocrinology Source Type: research

6-Bromoindirubin-3 ′-Oxime (6BIO) Suppresses the mTOR Pathway, Promotes Autophagy, and Exerts Anti-aging Effects in Rodent Liver
In this study, we aimed to investigate the anti-aging effect, and molecular mechanism, of the novel anti-aging drug 6BIO on naturally aged mouse liver. Rapamycin, a well-known promising anti-aging drug that delays aging through mTOR-dependent autophagy (Zhou and Ye, 2018), was used as the positive control in the study. To our knowledge, this is the first study to demonstrate the effects of 6BIO treatment in models of natural aging. Our results indicated that 6BIO ameliorates the decline of liver function with age, including lipid metabolism disorder, and attenuates hepatocyte senescence in aged mice, as revealed by altera...
Source: Frontiers in Pharmacology - April 9, 2019 Category: Drugs & Pharmacology Source Type: research