Using plasma proteomics to investigate viral infections of the central nervous system including patients with HIV-associated neurocognitive disorders

AbstractState-of-the-art liquid chromatography/mass spectrometry (LC/MS)-based proteomic technologies, using microliter amounts of patient plasma, can detect and quantify several hundred plasma proteins in a high throughput fashion, allowing for the discovery of clinically relevant protein biomarkers and insights into the underlying pathobiological processes. Using such an in-house developed high throughput plasma proteomics allowed us to identify and quantify  >  400 plasmas proteins in 15 min per sample, i.e., a throughput of 100 samples/day. We demonstrated the clinical applicability of our method in this pilot study by mapping the plasma proteomes from patients infected with human immunodeficiency virus (HIV) or herpes virus, both groups with involvem ent of the central nervous system (CNS). We found significant disease-specific differences in the plasma proteomes. The most notable difference was a decrease in the levels of several coagulation-associated proteins in HIV vs. herpes virus, among other dysregulated biological pathways providing insi ght into the differential pathophysiology of HIV compared to herpes virus infection. In a subsequent analysis, we found several plasma proteins associated with immunity and metabolism to differentiate patients with HIV-associated neurocognitive disorders (HAND) compared to cognitively normal people with HIV (PWH), suggesting the presence of plasma-based biomarkers to distinguishing HAND from cognitively normal PWH. Overal...
Source: Journal of NeuroVirology - Category: Neurology Source Type: research
More News: Brain | Herpes | Neurology | Study