LncRNA SNHG11 enhances bevacizumab resistance in colorectal cancer by mediating miR-1207-5p/ABCC1 axis

In this study, we aimed to explore the functions of lncRNA small nucleolar RNA host gene 11 (SNHG11) in the resistance of CRC to bevacizumab. Quantitative real-time PCR, western blot assay or immunohistochemistry assay were performed to examine the expression of SNHG11, microRNA-1207-5p (miR-1207-5p), ATP binding cassette subfamily C member 1 (ABCC1) and Ki67. Cell Counting Kit-8 assay was conducted to evaluate bevacizumab resistance and cell viability. 5′-ethynyl-2′-deoxyuridine analysis, flow cytometry analysis and wound-healing assay were conducted for cell proliferation, apoptosis and migration, respectively. Dual-luciferase reporter assay and RNA immunoprecipitation assay were employed to analyze the relations among SNHG11, miR-1207-5p and ABCC1. Murine xenograft model assay was employed to analyze bevacizumab resistance in vivo. The exosomes were observed under transmission electron microscopy. SNHG11 was overexpressed in bevacizumab-resistant CRC tissues and cells. Knockdown of SNHG11 restrained bevacizumab resistance, repressed cell proliferation and migration, and promoted apoptosis in bevacizumab-resistant CRC cells. MiR-1207-5p served as the target of SNHG11 and SNHG11 regulated bevacizumab resistance by targeting miR-1207-5p. ABCC1 was the target gene of miR-1207-5p. Overexpression of miR-1207-5p inhibited bevacizumab resistance and cell progression in bevacizumab-resistant CRC cells, with ABCC1 elevation abrogated the impacts. SNHG11 silencing repressed bevac...
Source: Anti-Cancer Drugs - Category: Cancer & Oncology Tags: Clinical Reports Source Type: research