LPS induces pulmonary microvascular endothelial cell barrier dysfunction by upregulating ceramide production

Cell Signal. 2022 Jan 19:110250. doi: 10.1016/j.cellsig.2022.110250. Online ahead of print.ABSTRACTThe specific role of ceramides in pulmonary microvascular endothelial cell (PMVEC) barrier dysfunction remains unclear. In the present study, pretreatment with pan-caspase inhibitors significantly reduced LPS-induced PMVEC apoptosis and helped to stimulate PMVEC barrier reconstruction after 12 h but had no effect on PMVEC barrier dysfunction in the first 8 h. Further studies showed that imipramine, an acid sphingomyelinase (ASMase) inhibitor, significantly inhibited LPS-induced barrier dysfunction, while an siRNA targeting serine palmityl transferase subunit 1 (SPTLC1) and the pharmacological inhibitor myriocin did not inhibit early acute barrier dysfunction but significantly inhibited PMVEC apoptosis and apoptosis-dependent delayed barrier dysfunction. In addition, LPS was shown to activate RhoA by inducing transient receptor potential channel 6 (TRPC6) overexpression and calcium influx through the ASMase/ceramide pathway, and activation of RhoA further induced the cytoskeletal rearrangement of PMVECs and destruction of intercellular junctions, ultimately leading to early acute PMVEC barrier dysfunction. However, regarding apoptosis-dependent delayed barrier dysfunction, the ceramide-induced de novo synthesis pathway in paracellular cells induced the apoptosis of PMVECs, in which Txnip overexpression inhibited Trx activity and subsequently activated ASK1 in the context of LPS-i...
Source: Cellular Signalling - Category: Cytology Authors: Source Type: research
More News: Calcium | Cytology | Imipramine | Study