Characterizing Polarity Sensitivity in Cochlear Implant Recipients: Demographic Effects and Potential Implications for Estimating Neural Health

AbstractStimulus polarity can affect both physiological and perceptual measures in cochlear-implant recipients. Large differences between polarities for various outcome measures (e.g., eCAP threshold, amplitude, or slope) theoretically reflect poorer neural health, whereas smaller differences reflect better neural health. Therefore, we expect large polarity effects to be correlated with other measures shown to contribute to poor neural health, such as advanced age or prolonged deafness. Our earlier studies using the electrically evoked compound action potential (eCAP) demonstrated differences in polarity effects between users of Cochlear and Advanced Bionics devices when device-specific clinical pulse designs were used. Since the stimuli differed slightly between devices, the first goal of this study was to determine whether small, clinically relevant differences in pulse phase duration (PD) have a significant impact on eCAP polarity effects to potentially explain the device differences observed previously. Polarity effects were quantified as the difference in eCAP thresholds, mean normalized amplitudes, and slope of the amplitude growth function obtained for anodic-first versus cathodic-first biphasic pulses. The results showed that small variations in PD did not explain the observed differences in eCAP polarity effects between devices. Therefore, eCAP polarity sensitivity measures are relatively robust to small differences in pulse parameters. However, it remains unclear wh...
Source: JARO - Journal of the Association for Research in Otolaryngology - Category: ENT & OMF Source Type: research